Introduction

This application note describes the SPICE macro-model for the HA-5137, a wide bandwidth precision op amp. The model was designed to be compatible with the well known SPICE program developed by the University of California in hope that most simulation software venders follow this basic format and syntax. A schematic of the macro-model, the Spice net listing and various simulated performance curves are included. The macro-model schematic includes node numbers to help relate the SPICE listing to the schematic. The model is designed to emulate a typical rather than a worst case part. Most AC and DC parameters are simulated. Significant poles and zeros are included to give the most accurate AC and transient simulation with minimum complexity.

Model Description

Input Stage

DP and DN represent the differential input resistance. Input bias currents are created by 11 and offset current is modeled with FA. Source VN represents the input offset voltage. C1 limits slew rate. No input parasitics due to package capacitance and lead inductance are included.

Gain Stage

G2, R2, CC, GOL, and RD simulate open loop gain. CC is the macro-model dominant pole capacitor.

Poles and Zeros

The most significant singularities of the HA-5137 are modeled by RC networks. One pole-zero pair and four additional poles are used.

Output Stage

EX1, D1 and D2 model output current limiting. IH and IL are the power supply currents. DPH, DPL and GPS vary the supply currents based on the opamp's output current. DL, DH, ECC and EEE provide voltage clamping on the output to simulate the typical output voltage swing. Some effects of output parasitics due to package capacitance and inductance are lumped with the poles.

Parameters Not Modeled

To maintain a simple macro-model not all op amp parameters are modeled. Most of the parameters not modeled are listed below:

- Temperature Effects
- Differential Voltage Restrictions
- Input Voltage and Current Noise
- Common Mode Restrictions
- Tolerances for Monte Carlo Analysis
- Power Supply Range

Spice Listing

*COPYRIGHT (C) 1992 INTERSIL CORPORATION
*ALL RIGHTS RESERVED
*
*HA-5137 MACRO-MODEL
*REV: 2-04-92
*BY: D.W. RIEMER
*
*PINOUT +IN -IN VCC VEE OUT
*
.SUBCKT HA5137 12453

.MODEL	DP	D	$I S=1 E-14$	$N=+6.6967 \mathrm{E}-01$
.MODEL	DN	D	$I S=+8.5 \mathrm{E}-15$	$\mathrm{~N}=+6.6967 \mathrm{E}-01$
.MODEL	DV	D	$I S=+1.1746 \mathrm{E}-14$	$\mathrm{~N}=.2$
.MODEL	D1	D	$I S=1 \mathrm{E}-9$	$\mathrm{~N}=1$
.MODEL	D2	D	$\mathrm{IS}=1 \mathrm{E}-9$	$\mathrm{~N}=+1.0$
.MODEL	DX	D	$\mathrm{IS}=1 \mathrm{E}-20$	$\mathrm{~N}=+30.0$

*INPUT STAGE
*VALUE OF SOURCE VN MODELS VIO AND
*MAY BE ADJUSTED AS DESIRED.
*
VP 160
VN 27 +1.0E-05
$1180+1.295 \mathrm{E}-08$
FA 20 VN +1.857E+00
DP 68 DP
DN 78 DN
C1 $80 \quad+1.0792 \mathrm{E}-16 \quad \mathrm{IC}=-2.3157 \mathrm{E}-01$
FP 90 VP $+3.0579 \mathrm{E}+04$
FN $09 \mathrm{VN} \quad+3.5975 \mathrm{E}+04$
GC $0980 \quad 0 \quad+1.2372 \mathrm{E}-08$
GPP $900400+2.2123 E-08$
GPN $90 \begin{array}{lllll}9 & 0 & 0 & +2.2123 E-08\end{array}$
IRX 09 +2.865E-09
RT 9001.0
*

* POLES AND ZEROS

EP1	10	0	9	0	1.0
RP1	10	11	$+2.21 \mathrm{E}+02$		
RZ1	11	12	$+1.77 \mathrm{E}+02$		
CP1	12	0	$1 \mathrm{E}-10$		
EP2	13	0	11		0
RP2	13	14	+1.0		
CP2	14	0	$1 \mathrm{E}-10$		
EP3	15	0	14	0	1.0
RP3	15	16	$+1.0613 \mathrm{E}+01$		
CP3	16	0	$1 \mathrm{E}-10$		
EP4	17	0	16	0	1.0
RP4	17	18	+9.0971		
CP4	18	0	$1 \mathrm{E}-10$		
EP5	19	0	18	0	1.0
RP5	19	20	+7.96		
CP5	20	0	$1 \mathrm{E}-10$		

* OUTPUT STAGE
$\begin{array}{llllll}\text { G2 } & 0 & 21 & 20 & 0 & 1.0\end{array}$
R2 $210 \quad+6.5577 \mathrm{E}+02$
CC $21 \quad 22+2.2 E-11$
GOL $22002100+3.6187 \mathrm{E}+03$
RD 220 +5. 0809E +01
DH 2223 DV
DL 2422 DV
$\begin{array}{lllllllll}\text { ECC } & 23 & 0 & \text { POLY } & 1 & 4 & 0 & -2.7 & 1.0\end{array}$
EEE $24 \begin{array}{llllllll} & 0 & \text { POLY } & 1 & 5 & 0 & +2.7 & 1.0\end{array}$
IH 40 +3.5E-03
IL $0 \quad 5 \quad+3.5 \mathrm{E}-03$
GPS $2502223+8.5427 \mathrm{E}-02$
DPH 425 DX
DPL 255 DX
D1 $22 \quad 26$ D1
D2 $26 \quad 22$ D2
EX1 260 POLY $2 \begin{array}{llllllll}22 & 0 & 3 & 0 & 0.0 & -7.2888 E-01+1.7249\end{array}$
RO 223 +1.17059E+01
.ENDS HA5137

Macro-Model Schematic

Typical Performance Curves

GAIN/PHASE RESPONSE vs FREQUENCY

Typical Performance Curves (Continued)

All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation 7585 Irvine Center Drive Suite 100 Irvine, CA 92618
TEL: (949) 341-7000
FAX: (949) 341-7123

EUROPE

Intersil Europe Sarl
Ave. C - F Ramuz 43
CH-1009 Pully
Switzerland
TEL: +41 217293637
FAX: +41 217293684

ASIA

Intersil Corporation
Unit 1804 18/F Guangdong Water Building 83 Austin Road
TST, Kowloon Hong Kong
TEL: +852 27236339
FAX: +852 27301433

